Application and discussion on entransy analysis of ammonia/salt absorption heat pump systems

Author:

Yang Lei1234,Huang Sihao1234,Lu Zhenneng123,Gong Yulie123,Li Huashan123

Affiliation:

1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract This study investigates the application of the entransy analysis in ammonia/salt absorption heat pump (AHP) systems. The results of the entransy analysis are compared with those of energy analysis and exergy analysis under typical and various operating conditions. Entransy dissipation and exergy loss in each component, as well as coefficient of performance (COP), exergy efficiency and entransy efficiency of systems, are discussed. The changing trends of entransy dissipation in each component are similar under various operating conditions. However, the entransy analysis performs better than the exergy analysis in evaluating the irreversible loss of each component. Moreover, the differences between the exergy analysis and entransy analysis are mainly in absorber, generator and SHE. Especially in the NH3/NaSCN system, the proportion of entransy dissipation in generator is 60.8%, which is almost twice of the proportion of exergy loss (34.9%). In addition, under various operating conditions, entransy efficiency and COP have roughly the same changing trend. Meanwhile, entransy efficiency is more reasonable than exergy efficiency in evaluating the performance of systems under the absorption temperature, which varies from 30°C to 50°C. These comparison results demonstrate that the entransy analysis is appropriate to evaluate the performance of ammonia/salt AHP systems and suitable for analyzing the irreversibility of each component.

Funder

Science and Technology Service Network Initiative Project of Chinese Academy of Sciences

Shandong Major Science and Technology Innovation Projects

Strategic Priority Research Program of Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3