Thermal insulation and mechanical properties of a specially improved insulation plaster under freezing–thawing and high-temperature conditions

Author:

Ustabas Ilker1,Cuce Erdem23

Affiliation:

1. Recep Tayyip Erdogan University Department of Civil Engineering, Faculty of Engineering and Architecture, , Zihni Derin Campus, 53100 Rize, Turkey

2. Recep Tayyip Erdogan University Low/Zero Carbon Energy Technologies Laboratory, Faculty of Engineering and Architecture, , Zihni Derin Campus, 53100 Rize, Turkey

3. Recep Tayyip Erdogan University Department of Mechanical Engineering, Faculty of Engineering and Architecture, , Zihni Derin Campus, 53100 Rize, Turkey

Abstract

Abstract In this study, the effects of heat preservation and the resistance to environmental conditions of ready-made insulating sludge used in the interior and exterior facades of the buildings were investigated. The insulation consists of lightweight aggregates, boron and steel fiber. Within the scope of the study, 1 L of water was mixed with 1 kg of insulating fluid as a proportion and a composite material was obtained. Thermal conductivity coefficient, resistance to high temperature, changes in ultrasound speed, resistance to frost and compressive strength tests were compared with respect to normal plaster consumption. At the same time, samples of 15 × 15 × 15 cm cube samples taken from fresh concrete were plated to be 1 and 2 cm on each surface, and the extent to which the mortar retained concrete under environmental conditions was investigated. One of the components of the insulating sludge, lightweight aggregate-derived perlite and pumice, was found to provide heat and sound insulation. The presence of boron in the components increased the binding and did not necessitate the use of cement during mortar. It has been observed that the presence of steel fibers minimizes the cracks in the mortar and increases the resistance of the mixture mortar. The unit weight of the insulation plaster mortar is about 0.5 g/cm3 owing to the remarkably lower density of light fine particles. Polymer fibers and boron additives yield a notably low thermal conductivity of 0.13 W/mK.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3