Research on fault diagnosis of industrial materials based on hybrid deep learning model

Author:

Chen Rong1ORCID

Affiliation:

1. School of Computer Science, Nanjing Audit University , No. 86 Yushan West Road, Jiangpu Street, Pukou District, Nanjing City, Jiangsu Province 211815 , China

Abstract

Abstract Bearing fault detection is becoming more and more important in industrial development, and deep learning image processing technology provides a new solution for this. In this study, ResNet50 is used to replace VGG-16 as the feature extraction network of Faster R-CNN, and feature pyramid network (FPN) and parallel attention module (PAM) are introduced to achieve higher detection accuracy and speed. The experimental validation was conducted with the Case Western Reserve University bearing dataset using a three-fold cross-validation and compared with Yolov5, FPN, and the original Faster R-CNN model. The experimental results show that the accuracy of the proposed bearing image fault detection method is 78.6%, the accuracy is 77.4%, and the recall rate is 76.9%, which can locate and identify bearing faults more accurately. Future work could focus on further optimizing the model structure to enhance detection performance, strengthening the model’s generalization ability to meet the detection requirements of different types of bearing faults.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3