Synergistic effect of ZnO nanoparticles with organic compound as corrosion inhibition

Author:

AL-Mosawi Buraq T Sh1,Sabri Mohammed M2,Ahmed Muhanad A3

Affiliation:

1. Department of Mathematics, College of Education, University of Misan, Maysan 62001, Iraq

2. Department of Physics, Faculty of Science and Health, Koya University, KOYA KOY45, Kurdistan Region-F.R., Iraq

3. Department of Electrical Technology, Technical Institute of Baghdad, Middle Technical University, Baghdad 10001, Iraq

Abstract

Abstract In chemical manufactures, the corrosion inhibitors were added in order to reduce the corrosion of mild steel. Chemical molecules are often used on mild steel surfaces as portion of the latest finishing steps before painting and/or storage. Here, this work elucidated the utilization of an isatin derivative, namely, 3-((3-acetylphenyl)imino)indolin-2-one synergistic with zinc oxide nanoparticles for improving the impedance of mild steel (MS) against corrosion in 1.0 M hydrochloric acid using the weight loss method and scanning electron microscopy (SEM). Weight loss measurements demonstrated that the best 3-((3-acetylphenyl)imino)indolin-2-one concentration was 0.5 mM and the inhibition efficiency was 83% whereas the inhibition efficiency was 92% with addition of ZnO NPs. 3-((3-Acetylphenyl)imino)indolin-2-one retards the corrosion process at 300 K and demonstrates low inhibition efficiencies at 310, 320 and 330 K.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3