Evaluating parallelized support vector regression and nearest neighbor regression with different input variations for estimating daily global solar radiation of the humid subtropical region in China

Author:

Yu Xiang1ORCID

Affiliation:

1. Nanchang Institute of Technology Provincial Key Laboratory for Water Information Cooperative Sensing and Intelligent Processing, , 289 Tianxiang Road, Nanchang, Jiangxi 330099, China

Abstract

AbstractIndirectly estimating global solar radiation is strongly nonlinear and needs to be addressed by machine learning. Sequentially developing a machine learning model can be very time consuming. Moreover, whether and how the exogenous meteorological, geographical and temporal variables affect regression accuracy still has not been well understood. This paper evaluates parallelized support vector regression (SVR) and nearest neighbor regression (NNR) models for estimating daily global solar radiation of the humid subtropical region in China using existing Python libraries on a multi-core central processing unit (CPU) and a graphical processing unit (GPU). Seven input variations are studied. Two variations are commonly adopted in literature, four variations contain meteorological, geographical and/or temporal features with bounded Pearson correlation coefficients (PCCs), and the other variation simply include all the available features. Experimental results demonstrate that: SVR and NNR are equally powerful for nonlinear regression, and the variation comprising features with absolute PCCs no less than 0.3 (i.e. just all the meteorological features) is able to achieve most accurate estimation; the GPU-parallelized SVR model can accelerate parameter calibration and prediction; compared with the CPU-parallelized and GPU-parallelized SVR models, the GPU-parallelized NNR model is much more efficient and rather more scalable with the increment of the number of data samples; and the CPU-parallelized NNR model consumes quite less parameter calibration time than the GPU-parallelized NNR model, owing to different methods adopted for determining distances and significant time wasted by the GPU-parallelized NNR model on repeatedly calculating required information during cross-validation.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3