Determining the effective diffusivity coefficient and activation energy in thin-layer drying of Haj Kazemi peach slices and modeling drying kinetics using ANFIS

Author:

Barforoosh Majid Yazdani1ORCID,Borghaee Ali Mohammad1,Rafiee Shahin2,Minaei Saeid3,Beheshti Babak1

Affiliation:

1. Islamic Azad University Department of Agricultural Systems Engineering, Science and Research Branch, , shohada Hesarak blvd, Daneshgah Square, Sattari Highway,1477893855, Tehran, Iran

2. University of Tehran Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture & Natural Resources, , Daneshkadeh Ave., 77871-31587, Karaj, Iran

3. Tarbiat Modares University Biosystems Engineering Department, Faculty of Agriculture, , Jalale Ale Ahmad Express Way, 14117-13116, Tehran, Iran

Abstract

Abstract This study investigated the moisture changes in Haj Kazemi peach slices during drying in a thin-layer dryer at five temperature levels (40, 50, 60, 70, and 80°C), three levels of inlet air velocity (1, 1.5, and 2 m/s), and three slice thicknesses (2, 4, and 6 mm). The relative moisture content during drying was calculated, and an adaptive neuro fuzzy inference system (ANFIS) was used to predict the drying process of peach slices. The results indicated that slice thickness had a greater impact on drying time than air velocity. Moreover, an almost direct relationship was observed between changes in slice thickness and drying time. The effective moisture diffusivity coefficient in peach slices increased with an increase in slice thickness, temperature, and air velocity and ranged from 9.57 × 10^-10 to 4.33 × 10^-9 m^2/s under different experimental conditions. The calculated activation energy for drying peach slices under experimental conditions ranged from 16.74 to 20.48 kJ/mol. The designed model for simulating the drying conditions was based on an adaptive neuro fuzzy inference system (ANFIS) with input and output membership functions of triangular and linear shapes and a hybrid learning algorithm. The model could simulate the drying process with a correlation coefficient of 0.979.

Publisher

Oxford University Press (OUP)

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3