Performance of solar-air source heat pump heating system aided by district heat supply network research

Author:

Liu Yin1,Du Chenyang1,Meng Zhaofeng1,Dong Suiju2,Zhang Fan1,Wu Feijun1,Wang Mingming1

Affiliation:

1. School of Energy and Environment, Zhongyuan University of Technology , Zhengzhou 450007, China

2. Zhengzhou Heating Group Co Ltd , Zhengzhou 450052, China

Abstract

Abstract To improve the usage rate of district heat supply network and solve the frost problem in solar-air heat pumps, this study used TRNSYS to construct a new solar-air source heat pump heating composite system that uses waste heat from the district heat supply network. The impact of the waste heat recovery device on the heating performance of the new composite system was analysed, and the economic and environmental performance of the composite system was compared with other heating systems. During a typical day, the average coefficient of performance of air source heat pumps (COP) of the composite system increased by 13% and the power consumption of the system decreased by 35.9%. Throughout the heating season, the power consumption of the composite system was 13.59% higher than that of traditional systems, and system coefficient of performance (SCOP) was 15.89% lower than traditional systems. Based on economic analysis, the relative operating costs of the composite system, coal-fired boiler, gas-fired boiler, oil-fired boiler and combined heat and power (CHP) are 1, 1.19, 2.33, 5.56 and 0.85, respectively. The operating cost of the composite heat source system is only 17.43% higher than that of CHP and lower than the other three heating systems. Quantitative evaluations of the environmental friendliness of these systems were conducted using the fuzzy analysis mathematical method. The evaluation results were 9.62, 5.89, 15.05, 9.10 and 6.79, respectively. It was found that the composite system is second only to the gas-fired boiler in terms of environmental friendliness and is 38.9% higher than the coal-fired boiler and 29.5% higher than the CHP.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3