Effects of evaporation parameters on recuperative transcritical organic Rankine cycle using binary mixture fluids

Author:

Hsieh Jui-Ching,Cheng Chu-Hong1

Affiliation:

1. Department of Mechanical Engineering, National Chin-Yi University of Technology, 41170 Taichung, Taiwan

Abstract

Abstract In this study, thermodynamic analysis was performed on basic and recuperative transcritical organic Rankine cycles by using five pure and six mixed fluids. The effects of evaporation parameters on the first- and second-law efficiencies (ηI and ηII) as well as power output were investigated. The results indicate that a recuperator had a positive effect on the ηI and ηII and negative effects on the specific power. The total irreversibility of the system was improved by the recuperator. However, the total irreversibility considerably increased with an increase in the expander inlet temperature (Texp,in) due to the significant increase in irreversibility in the condenser, particularly for working fluids with low critical temperatures, namely R134a, R1234yf and R290, and low proportions of R245fa and R600a in mixed fluids. For both the pure and mixed fluids, the specific power linearly increased with an increase in the expander inlet pressure (Pexp,in) and Texp,in. However, with an increase in Pexp,in, the ηI and ηII first increased and then decreased. Finally, for ηI and ηII, the effect of the recuperator increased with an increase in Texp,in even though the recuperator had a relatively small effect on the working fluids with high critical temperature, especially when Pexp,in was high.

Funder

Ministry of Education, Republic of China

Ministry of Science and Technology of the People's Republic of China

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3