Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant

Author:

El Haj Assad Mamdouh1,Aryanfar Yashar2,Javaherian Amirreza3,Khosravi Ali4,Aghaei Karim5,Hosseinzadeh Siamak6,Pabon Juan7,Mahmoudi SMS3

Affiliation:

1. Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah 27272, United Arab Emirates

2. College of Mechanics and Materials, Hohai University, Nanjing 210098, China

3. Department of Mechanical Engineering, University of Tabriz, Tabriz 51666-14766, Iran

4. Department of Mechanical Engineering, School of Engineering, Aalto University, Helsinki 02150, Finland

5. Department of Civil Engineering, Islamic Azad University, Tabriz 83111-55181, Iran

6. Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, Rome 00185, Italy

7. Institute of Mechanical Engineering, Federal University of Itajubá, Itajubá 37500-903, Brazil

Abstract

Abstract The need for energy is increasing worldwide as the population has a continuous trend of increase. The restrictions on energy sources are becoming tougher as the authorities set these developed and developing countries. This leads to looking for other alternative energy sources to replace the conventional energy sources, leading to greenhouse emissions. Environmentally friendly energy sources (renewable energies), for example, geothermal, solar and wind, are viewed as clean and sustainable energy sources. Among these kinds of energy sources, geothermal energy is one of the best options because, like solar and wind energy sources, it does not depend on weather conditions. In this work, a single flash geothermal power plant is used to power a transcritical CO2 power plant is proposed. The energy and exergy analysis of the proposed combined power plant has been performed and the best possible operating mode of the power plant has been discussed. The effects of parameters such as separator pressure, CO2 condenser temperature and CO2 turbine inlet pressure and the pinch point on the energy efficiency, exergy efficiency and output power are determined and discussed. Our results indicate that the highest exergy destruction is in the CO2 vapor generator of 182.4 kW followed by the CO2 turbine of 106 kW, then the CO2 condenser of 82.81 kW and then the CO2 pump 58.76 kW. The lowest exergy destruction rates occur in the single flash geothermal power plant components where the separator has exactly zero exergy destruction rate. The results also show that the combined power plant produces more power and has better efficiencies (first law and second law) than the stand-alone geothermal power plant. Finally, Nelder–Mead simplex method is applied to determine the optimal parameters such as separator pressure, power output and pumps input power and second law efficiency. The results show that the power plant should be operated at a lower pinch temperature to reduce damage to the environment. As the condenser pressure increases, the environmental damage effectiveness coefficient decreases sharply until it reaches the minimum value of 1.2 to 1.7 MPa and then starts to increase. The trend of the impact of sports on environmental improvement is exactly the opposite of the trend of the effectiveness of environmental damage. Therefore, from an environmental point of view, it is recommended to operate the gas turbine at a high inlet pressure.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3