Renewable hybrid energy systems using geothermal energy: hybrid solar thermal–geothermal power plant

Author:

El Haj Assad Mamdouh1,Ahmadi Mohammad Hossein2,Sadeghzadeh Milad3,Yassin Ameera1,Issakhov Alibek4

Affiliation:

1. Sustainable and Renewable Energy Engineering Department, University of Sharjah, P O Box 27272, Sharjah, UAE

2. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

3. Department of Renewable Energy and Environmental Engineering, University of Tehran, Tehran, Iran

4. Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract

Abstract New and innovative solutions are being developed to overcome the challenges of detrimental effects that the traditional energy systems cause. This means that sustainable methods are implemented to do so, noting that when such developments are taken into consideration and are studied, this leads to a significant drop in the cost of renewable energy systems. In this work, a hybrid system consisting of a single flash steam geothermal power plant and a solar thermal system using a parabolic trough collector (PTC) is studied. Based on the available works in literature, the required design materials and modeling equations are chosen and discussed. The heat transfer fluid (HTF) as water is chosen as the working fluid for the PTC due to its low cost and high specific heat capacity. The calculations are carried out for the PTC on a specific day, time and location, and the simulations for the geothermal power plant (GPP) are carried out using System Advisor Model (SAM) software, assuming a specific increase in the temperature of the geofluid due to the additional heat transfer from the HTF of the PTC. The power plant output is 20 MW powered by four production wells. The results show that the energy production is ~15 GWh in January, which is the highest during the year due to the required energy demand for electricity consumption and district heating. Moreover, a mini review of the mathematical modeling of PTC and single flash geothermal power plant is presented.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3