Affiliation:
1. Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
Abstract
Abstract
Cyanobacteria are widely distributed photosynthetic organisms. During the day they store carbon, mainly as glycogen, to provide the energy and carbon source they require for maintenance during the night. Here, we generate a mutant strain of the freshwater cyanobacterium Synechocystis sp. PCC 6803 lacking both glycogen synthases. This mutant has a lethal phenotype due to massive accumulation of ADP-glucose, the substrate of glycogen synthases. This accumulation leads to alterations in its photosynthetic capacity and a dramatic decrease in the adenylate energy charge of the cell to values as low as 0.1. Lack of ADP-glucose pyrophosphorylase, the enzyme responsible for ADP-glucose synthesis, or reintroduction of any of the glycogen synthases abolishes the lethal phenotype. Viability of the glycogen synthase mutant is also fully recovered in NaCl-supplemented medium, which redirects the surplus of ADP-glucose to synthesize the osmolite glucosylglycerol. This alternative metabolic sink also suppresses phenotypes associated with the defective response to nitrogen deprivation characteristic of glycogen-less mutants, restoring the capacity to degrade phycobiliproteins. Thus, our system is an excellent example of how inadequate management of the adenine nucleotide pools results in a lethal phenotype, and the influence of metabolic carbon flux in cell viability and fitness.
Publisher
Oxford University Press (OUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献