Affiliation:
1. School of Life Sciences, University of Essex, Colchester, UK
Abstract
Abstract
Although thermography allows rapid, non-invasive measurements of large numbers of plants, it has not been used extensively due to the difficulty in deriving biologically relevant information such as leaf transpiration (E) and stomatal conductance (gsw) from thermograms. Methods normalizing leaf temperature using temperatures from reference materials (e.g. with and without evaporative flux) to generate stress indices are generally preferred due to their ease of use to assess plant water status. Here, a simplified method to solve dynamic energy balance equations is presented, which enables the calculation of ‘wet’ and ‘dry’ leaf temperatures in order to derive stress indices, whilst providing accurate estimates of E and gsw. Comparing stress indices and gas exchange parameters highlights the limitation of stress indices in a dynamic environment and how this problem can be overcome using artificial leaf references with known conductance. Additionally, applying the equations for each pixel of a thermogram to derive the rapidity of stomatal response over the leaf lamina in wheat revealed the spatial heterogeneity of stomatal behaviour. Rapidity of stomatal movements is an important determinant of water use efficiency, and our results showed ‘patchy’ responses that were linked to both the spatial and temporal response of gsw.
Funder
Biotechnology and Biological Sciences Research Council
Global Challenges Research Fund
Research and Empowerment for Sustainable food Supplies
Publisher
Oxford University Press (OUP)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献