Genome-wide phylogenetic and structural analysis reveals the molecular evolution of the ABA receptor gene family

Author:

Yang Jing-Fang12ORCID,Chen Mo-Xian3ORCID,Zhang Jian-Hua345ORCID,Hao Ge-Fei126ORCID,Yang Guang-Fu127ORCID

Affiliation:

1. Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China

2. International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China

3. Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, P. R. China

4. Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China

5. State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China

6. State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, P. R. China

7. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P. R. China

Abstract

Abstract The plant hormone abscisic acid (ABA) plays a crucial role during the plant life cycle as well as in adaptive responses to environmental stresses. The core regulatory components of ABA signaling in plants are the pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor family (PYLs), which comprise the largest plant hormone receptor family known. They act as negative regulators of members of the protein phosphatase type 2C family. Due to the biological importance of PYLs, many researchers have focused on their genetic redundancy and consequent functional divergence. However, little is understood of their evolution and its impact on the generation of regulatory diversity. In this study, we identify positive selection and functional divergence in PYLs through phylogenetic reconstruction, gene structure and expression pattern analysis, positive selection analysis, functional divergence analysis, and structure comparison. We found the correlation of desensitization of PYLs under specific modifications in the molecular recognition domain with functional diversification. Hence, an interesting antagonistic co-evolutionary mechanism is proposed for the functional diversification of ABA receptor family proteins. We believe a compensatory evolutionary pathway may have occurred.

Funder

National Key R&D Program

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3