Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy

Author:

Wouters Philippe C1ORCID,van de Leur Rutger R1ORCID,Vessies Melle B1ORCID,van Stipdonk Antonius M W2ORCID,Ghossein Mohammed A3ORCID,Hassink Rutger J1ORCID,Doevendans Pieter A14ORCID,van der Harst Pim1ORCID,Maass Alexander H5ORCID,Prinzen Frits W3ORCID,Vernooy Kevin2ORCID,Meine Mathias1ORCID,van Es René1ORCID

Affiliation:

1. Department of Cardiology, University Medical Center Utrecht , Heidelberglaan 100, 3584 CX Utrecht , The Netherlands

2. Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+) , Maastricht , The Netherlands

3. Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , The Netherlands

4. Netherlands Heart Institute , Utrecht , The Netherlands

5. Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands

Abstract

AbstractAimsThis study aims to identify and visualize electrocardiogram (ECG) features using an explainable deep learning–based algorithm to predict cardiac resynchronization therapy (CRT) outcome. Its performance is compared with current guideline ECG criteria and QRSAREA.Methods and resultsA deep learning algorithm, trained on 1.1 million ECGs from 251 473 patients, was used to compress the median beat ECG, thereby summarizing most ECG features into only 21 explainable factors (FactorECG). Pre-implantation ECGs of 1306 CRT patients from three academic centres were converted into their respective FactorECG. FactorECG predicted the combined clinical endpoint of death, left ventricular assist device, or heart transplantation [c-statistic 0.69, 95% confidence interval (CI) 0.66–0.72], significantly outperforming QRSAREA and guideline ECG criteria [c-statistic 0.61 (95% CI 0.58–0.64) and 0.57 (95% CI 0.54–0.60), P < 0.001 for both]. The addition of 13 clinical variables was of limited added value for the FactorECG model when compared with QRSAREA (Δ c-statistic 0.03 vs. 0.10). FactorECG identified inferolateral T-wave inversion, smaller right precordial S- and T-wave amplitude, ventricular rate, and increased PR interval and P-wave duration to be important predictors for poor outcome. An online visualization tool was created to provide interactive visualizations (https://crt.ecgx.ai).ConclusionRequiring only a standard 12-lead ECG, FactorECG held superior discriminative ability for the prediction of clinical outcome when compared with guideline criteria and QRSAREA, without requiring additional clinical variables. End-to-end automated visualization of ECG features allows for an explainable algorithm, which may facilitate rapid uptake of this personalized decision-making tool in CRT.

Funder

Dutch Heart Foundation

Netherlands Organisation

Health Research

Centre for Translational

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3