Machine learning to predict in-hospital mortality risk among heterogenous STEMI patients with diabetes

Author:

Kasim S1,Malek S2,Aziz M F2,Ibrahim K S1

Affiliation:

1. University of Technology Mara (UiTM), Kuala Lumpur, Malaysia

2. University of Malaya , Bioinformatics, Institute of Biological Science, Faculty of Science , Kuala Lumpur, Malaysia

Abstract

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): TECHNOLOGY DEVELOPMENT FUND 1 Background Diabetes has become a major public health concern in Asia. In Malaysia, the prevalence of diabetes has escalated in adults above the age of 18, affecting 3.9  million individuals. Patients with diabetes and coronary heart disease have worse outcomes, compared with patients without diabetes who have coronary heart disease. Conventional Risk scores such as TIMI and GRACE were derived from a Western Caucasian cohort with limited data from  Asian countries, despite Asia hosting 60% of the world’s population. Purpose It is important to recognize the significant features associated with in-hospital mortality risk that is population-specific in Asian diabetes patients with STEMI to achieve a reliable and effective clinical diagnosis and improved outcome. Electronic health records contain large amounts of information on patients’ medical history and are becoming invaluable research tools that could be applied to cardiovascular disease risk prediction through machine learning (ML) algorithms. With the current success of ML  over conventional methods in STEMI mortality prediction, we aim to develop ML algorithms for in-hospital risk mortality in Asian patients diagnosed with DM that can be adopted for clinical predictions Methods We used registry data from the Malaysian National Cardiovascular Disease Database of 5783 patients diagnosed with DM from 2006 to 2016. Fifty parameters including demographics, cardiovascular risk, medications and clinical variables were considered. Four machine learning (ML) algorithms were constructed using a 70% registry dataset; Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Booster (XGB) and Logistic Regression (LR). Feature selections were done based on ML algorithms feature importance combined with Sequential Backward Selection (SBS). The area under the curve (AUC)  was used as the performance evaluation metric. All algorithms were validated using a 30 % validation dataset and compared to the conventional TIMI risk score for STEMI. Results The best model SVM (AUC = 0.90) outperformed other ML algorithms (Figure 1) and TIMI risk score (AUC = 0.83). The best SVM model consists of 11 predictors which are Killip class, fasting blood glucose, age, systolic blood pressure, heart rate, ACE inhibitor, beta-blocker, total cholesterol, diastolic blood pressure, lower density lipoprotein, and diuretic (Figure 2). Common predictors of SVM and TIMI risk score are Killip class, age, systolic blood pressure, and heart rate. We have shown that the population-specific data mining approach for the prediction of diabetes patients’ mortality post-STEMI outperformed conventional TIMI risk score. Conclusion In the Asian multiethnic population, combination of ML approaches with features selection demonstrated promising outcomes in patients with DM that may be used for better patient prognostic than the conventional method. Abstract Figure 1: ML Best Model Performance  Abstract Figure 2: Selected Predictors for ML

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3