Erythrocytes induce vascular dysfunction in COVID-19

Author:

Mahdi A1,Collado A1,Tengbom J1,Jiao T1,Wodaje T2,Yang J1,Lundberg J O3,Zhou Z1,Pernow J1

Affiliation:

1. Karolinska Institute, Unit of Cardiology, Department of Medicine, Stockholm, Sweden

2. Karolinska Institute, Department of Medicine Huddinge, Stockholm, Sweden

3. Karolinska Institute, Department of Physiology and Pharmacology, Stockholm, Sweden

Abstract

Abstract Background Vascular injury has been implicated as a major cause of clinical complications in patients with coronavirus disease 2019 (COVID-19). Autopsy studies have revealed destruction of the endothelial cell lining, which might explain cardiovascular alterations arising from the infection. However, data demonstrating endothelial dysfunction during ongoing infection are sparse, and the underlying mechanisms are still largely unknown. Red blood cells (RBCs) are affected by COVID-19 with alterations in their structure and function, possibly contributing to vascular injury via increased oxidative stress. Purpose To determine the presence of endothelial dysfunction in patients with COVID-19 and to explore the RBC as a possible mediator of such dysfunction. Methods The study was performed on 17 patients hospitalized for moderate COVID-19 infection and age- and sex-matched healthy subjects. Inclusion criteria of the COVID-19 patients were PCR-verified SARS-CoV2 infection, pulmonary infiltrates on x-ray, oxygen demand during hospital stay and ≤ one cardiovascular co-morbidity. Microvascular endothelial function in vivo was assessed with a pulse amplitude tonometry device on each index finger at baseline and during reactive hyperemia and expressed as reactive hyperemia index (RHI). RBCs from COVID-19 patients (C19-RBCs) and healthy subjects (H-RBCs) were incubated with isolated rat aortic segments for evaluation of endothelium-dependent and -independent relaxation. Results COVID-19 patients displayed profound impairment in endothelial function in vivo with RHI 1.56 (1.30–1.81, median and interquartile range) compared to healthy subjects 2.36 (1.97–2.79, p<0.001). C19-RBCs induced severe impairment in both endothelium-dependent (27% maximal relaxation) and -independent relaxations (54%) compared to H-RBCs (67% and 95% relaxation, respectively). Further, C19-RBCs induced upregulation of vascular arginase 1 (∼2 fold increase compared to H-RBCs) and markers of oxidative stress (∼6 fold). Consequently, inhibition of vascular arginase or superoxide attenuated the impairment in endothelial function induced by C19-RBCs. C19-RBCs were characterized by increased production of reactive oxygen species (∼1.4 fold) and reduced export of the nitric oxide metabolite nitrate. Following pre-incubation with interferon-γ, but not interleukin-6 or tumor necrosis factor-α, H-RBCs induced impairment in endothelial function. Conclusions This study demonstrates the presence of marked endothelial dysfunction in an otherwise mainly healthy patient group hospitalized for COVID-19, and clearly implicates a central role of the RBC as a mediator of endothelial injury through enhancement of reactive oxygen species and arginase. These data shed light on a new pathological mechanism underlying vascular dysfunction in COVID-19 patients and may lay the foundation for future therapeutic developments. Funding Acknowledgement Type of funding sources: Foundation. Main funding source(s): Swedish Heart and Lung foundationSwedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3