Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease

Author:

van Smeden Maarten1ORCID,Heinze Georg2ORCID,Van Calster Ben345ORCID,Asselbergs Folkert W678,Vardas Panos E910ORCID,Bruining Nico11ORCID,de Jaegere Peter12,Moore Jason H13,Denaxas Spiros814ORCID,Boulesteix Anne Laure15,Moons Karel G M1

Affiliation:

1. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University , Universiteitsweg 100, 3584 CG Utrecht , The Netherlands

2. Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna , Vienna , Austria

3. Department of Development and Regeneration , KU Leuven, Leuven , Belgium

4. EPI Centre, KU Leuven , Leuven , Belgium

5. Department of Biomedical Data Sciences, Leiden University Medical Centre , Leiden , The Netherlands

6. Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands

7. Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London , London , UK

8. Health Data Research UK and Institute of Health Informatics, University College London , London , UK

9. Department of Cardiology, Heraklion University Hospital , Heraklion , Greece

10. Heart Sector, Hygeia Hospitals Group , Athens , Greece

11. Department of Cardiology , Erasmus MC , Thorax Center, Rotterdam , The Netherlands

12. Department of Cardiology , Erasmus MC, Thorax Center, Rotterdam , The Netherlands

13. Department of Computational Biomedicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA

14. The Alan Turing Institute , London , UK

15. Institute for Medical Information Processing, Biometry and Epidemiology , LMU Munich , Germany

Abstract

AbstractThe medical field has seen a rapid increase in the development of artificial intelligence (AI)-based prediction models. With the introduction of such AI-based prediction model tools and software in cardiovascular patient care, the cardiovascular researcher and healthcare professional are challenged to understand the opportunities as well as the limitations of the AI-based predictions. In this article, we present 12 critical questions for cardiovascular health professionals to ask when confronted with an AI-based prediction model. We aim to support medical professionals to distinguish the AI-based prediction models that can add value to patient care from the AI that does not.

Funder

UCL Hospitals, NIHR Biomedical Research Centre

Innovative Medicines Initiative-2 joint undertaking under grant agreement

National Institutes of Health

German Research Foundation

Federal Ministry of Education and Research

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3