The Serotonin Brainstem Hypothesis for the Sudden Infant Death Syndrome

Author:

Kinney Hannah C1,Haynes Robin L1

Affiliation:

1. Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts

Abstract

AbstractThe sudden infant death syndrome (SIDS) is the leading cause of postneonatal infant mortality in the United States today, with an overall rate of 0.39/1000 live births. It is defined as the sudden and unexpected death of an infant <12 months of age that remains unexplained after a complete autopsy, death scene investigation, and review of the clinical history. The serotonin brainstem hypothesis has been a leading hypothesis for SIDS over the last 2 decades. Our laboratory has studied this hypothesis over time with a variety of tissue techniques, including tissue receptor autoradiography, high performance liquid chromatography, Western blot analysis, immunocytochemistry, and proteomics. The purpose of this article is to review the progress in our laboratory toward supporting this hypothesis. We conclude that an important subset of SIDS infants has serotonergic abnormalities resulting from a “core lesion” in the medullary reticular formation comprised of nuclei that contain serotonin neurons. This lesion could lead to a failure of protective brainstem responses to homeostatic challenges during sleep in a critical developmental period which cause sleep-related sudden death.

Funder

National Institute of Child Health and Development

CJ Foundation for SIDS

Cooper Trewin Brighter Days Fund

River’s Gift

Evelyn Deborah Barrett Fellowship for SIDS Research

Marley J. Cherella Fellowship for SIDS Research

First Candle/SIDS Alliance

CJ Murphy Foundation for Solving the Puzzle of SIDS

Barrett Tallman Memorial Fund

Florida SIDS Alliance

Jacob Neil Boger Foundation for SIDS

Jason Lutz SIDS Foundation

Three Butterflies Foundation

Bennett C. Endres Fellowship

The Family of Lyla Heffernan

Robert’s Program on Sudden Unexpected Death in Pediatrics

NIH

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3