Inter-alpha Inhibitor Proteins Modulate Neuroinflammatory Biomarkers After Hypoxia-Ischemia in Neonatal Rats

Author:

Barrios-Anderson Adriel12,Chen Xiaodi12,Nakada Sakura12,Chen Ray12,Lim Yow-Pin34,Stonestreet Barbara S12

Affiliation:

1. Department of Pediatrics, Women & Infants Hospital of Rhode Island

2. Department of Pediatrics, The Warren Alpert Medical School of Brown University

3. ProThera Biologics, Inc

4. Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island

Abstract

AbstractNeuroinflammation contributes to hypoxic-ischemic (HI) brain injury. Inter-alpha inhibitor proteins (IAIPs) have important immunomodulatory properties. Human (h) plasma-derived IAIPs reduce brain injury and improve neurobehavioral outcomes after HI. However, the effects of hIAIPs on neuroinflammatory biomarkers after HI have not been examined. We determined whether hIAIPs attenuated HI-related neuroinflammation. Postnatal day-7 rats exposed to sham-placebo, or right carotid ligation and 8% oxygen for 90 minutes with placebo, and hIAIP treatment were studied. hIAIPs (30 mg/kg) or PL was injected intraperitoneally immediately, 24, and 48 hours after HI. Rat complete blood counts and sex were determined. Brain tissue and peripheral blood were prepared for analysis 72 hours after HI. The effects of hIAIPs on HI-induced neuroinflammation were quantified by image analysis of positively stained astrocytic (glial fibrillary acid protein [GFAP]), microglial (ionized calcium binding adaptor molecule-1 [Iba-1]), neutrophilic (myeloperoxidase [MPO]), matrix metalloproteinase-9 (MMP9), and MMP9-MPO cellular markers in brain regions. hIAIPs reduced quantities of cortical GFAP, hippocampal Iba-1-positive microglia, corpus callosum MPO, and cortical MMP9-MPO cells and the percent of neutrophils in peripheral blood after HI in male, but not female rats. hIAIPs modulate neuroinflammatory biomarkers in the neonatal brain after HI and may exhibit sex-related differential effects.

Funder

National Institute of General Medical Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3