Affiliation:
1. Instituto de Investigaciones Metabólicas, Universidad del Salvador , Buenos Aires , Argentina
Abstract
ABSTRACT
Morbidity and mortality of chronic kidney disease (CKD) patients are largely associated with vascular calcification, an actively regulated process in which vascular smooth muscle cells (VSMCs) change into cells similar to osteocytes/chondrocytes, known as trans-differentiation. Cellular and systemic response to low oxygen (hypoxia) is regulated by the prolyl hydroxylase/hypoxia-inducible factor (HIF)-1 pathway. Recent studies highlighted that hypoxia-mediated activation of HIF-1 induces trans-differentiation of VSMCs into bone-forming type through an increase in osteo-/chondrogenic genes. Inhibition of the HIF-1 pathway abolished osteochondrogenic differentiation of VSMCs. Hypoxia strongly enhanced elevated phosphate-induced VSMC osteogenic trans-differentiation and calcification. HIF-1 was shown to be essential for phosphate enhanced VSMC calcification. O2-dependent degradation HIF-1 is triggered by the prolyl hydroxylase domain proteins (PHD). Prolyl hydroxylase inhibitors, daprodustat and roxadustat, increase high phosphate–induced VC in VSMCs, stabilizing HIF-1α and activating the HIF-1 pathway in these cells. Whether the use of these PHD inhibitors to treat anemia in CKD patients will favor the development and progression of vascular calcification remains to be explored.
Publisher
Oxford University Press (OUP)
Subject
Transplantation,Nephrology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献