A deep learning algorithm to quantify AVF stenosis and predict 6-month primary patency: a pilot study

Author:

Park Jae Hyon1,Yoon Jongjin1ORCID,Park Insun2,Sim Yongsik1,Kim Soo Jin3,Won Jong Yun1,Han Kichang1

Affiliation:

1. Department of Radiology, Yonsei University College of Medicine , Seoul , Republic of Korea

2. Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital , Seongnam , Republic of Korea

3. Department of Surgery, Yonsei University College of Medicine , Seoul , Republic of Korea

Abstract

ABSTRACTBackgroundA deep convolutional neural network (DCNN) model that predicts the degree of arteriovenous fistula (AVF) stenosis and 6-month primary patency (PP) based on AVF shunt sounds was developed, and was compared with various machine learning (ML) models trained on patients’ clinical data.MethodsForty dysfunctional AVF patients were recruited prospectively, and AVF shunt sounds were recorded before and after percutaneous transluminal angioplasty using a wireless stethoscope. The audio files were converted to melspectrograms to predict the degree of AVF stenosis and 6-month PP. The diagnostic performance of the melspectrogram-based DCNN model (ResNet50) was compared with that of other ML models [i.e. logistic regression (LR), decision tree (DT) and support vector machine (SVM)], as well as the DCNN model (ResNet50) trained on patients’ clinical data.ResultsMelspectrograms qualitatively reflected the degree of AVF stenosis by exhibiting a greater amplitude at mid-to-high frequency in the systolic phase with a more severe degree of stenosis, corresponding to a high-pitched bruit. The proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis. In predicting the 6-month PP, the area under the receiver operating characteristic curve of the melspectrogram-based DCNN model (ResNet50) (≥0.870) outperformed that of various ML models based on clinical data (LR, 0.783; DT, 0.766; SVM, 0.733) and that of the spiral-matrix DCNN model (0.828).ConclusionThe proposed melspectrogram-based DCNN model successfully predicted the degree of AVF stenosis and outperformed ML-based clinical models in predicting 6-month PP.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3