Development and validation of a prognostic model based on comorbidities to predict COVID-19 severity: a population-based study

Author:

Gude-Sampedro Francisco12ORCID,Fernández-Merino Carmen23,Ferreiro Lucía45ORCID,Lado-Baleato Óscar6ORCID,Espasandín-Domínguez Jenifer1,Hervada Xurxo7,Cadarso Carmen M6ORCID,Valdés Luis45

Affiliation:

1. Departamento de Epidemiología. Complejo Hospitalario Universitario de Santiago de Compostela. Santiago de Compostela, Spain

2. Grupo de Métodos de Investigación, Instituto de Investigaciones Sanitarias de Santiago (IDIS), Santiago de Compostela, Spain

3. Departamento de Medicina Familiar y Comunitaria. Centro de Saúde A Estrada. Pontevedra, Spain

4. Servicio de Neumología. Complejo Hospitalario Universitario de Santiago de Compostela. Santiago de Compostela, Spain

5. Grupo Interdisciplinar de Investigación en Neumología. Instituto de Investigaciones Sanitarias de Santiago (IDIS). Santiago de Compostela, Spain

6. Departamento de Estadística, Análisis Matemático y Optimización. Grupo Interdisciplinar de Bioestadística y Ciencia de Datos Biométricos (GRID-BDS), Universidad de Santiago de Compostela. Santiago de Compostela, Spain

7. Subdirección de Información sobre Saúde e Epidemioloxía. Dirección Xeral de Saúde Pública, Consellería de Sanidade, Xunta de Galicia. Santiago de Compostela, Spain

Abstract

Abstract Background The prognosis of patients with COVID-19 infection is uncertain. We derived and validated a new risk model for predicting progression to disease severity, hospitalization, admission to intensive care unit (ICU) and mortality in patients with COVID-19 infection (Gal-COVID-19 scores). Methods This is a retrospective cohort study of patients with COVID-19 infection confirmed by reverse transcription polymerase chain reaction (RT-PCR) in Galicia, Spain. Data were extracted from electronic health records of patients, including age, sex and comorbidities according to International Classification of Primary Care codes (ICPC-2). Logistic regression models were used to estimate the probability of disease severity. Calibration and discrimination were evaluated to assess model performance. Results The incidence of infection was 0.39% (10 454 patients). A total of 2492 patients (23.8%) required hospitalization, 284 (2.7%) were admitted to the ICU and 544 (5.2%) died. The variables included in the models to predict severity included age, gender and chronic comorbidities such as cardiovascular disease, diabetes, obesity, hypertension, chronic obstructive pulmonary disease, asthma, liver disease, chronic kidney disease and haematological cancer. The models demonstrated a fair–good fit for predicting hospitalization {AUC [area under the receiver operating characteristics (ROC) curve] 0.77 [95% confidence interval (CI) 0.76, 0.78]}, admission to ICU [AUC 0.83 (95%CI 0.81, 0.85)] and death [AUC 0.89 (95%CI 0.88, 0.90)]. Conclusions The Gal-COVID-19 scores provide risk estimates for predicting severity in COVID-19 patients. The ability to predict disease severity may help clinicians prioritize high-risk patients and facilitate the decision making of health authorities.

Funder

Instituto de Salud Carlos III

Ministry of Economy and Competitiveness

Fondo Europeo de Desarrollo Regional

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3