Affiliation:
1. College of Horticulture, China Agricultural University, Beijing 100193, PR China
Abstract
Abstract
Abscisic acid (ABA) regulates plant development mainly through its signaling, in which ABA binds to receptors to inhibit type 2C protein phosphatases (PP2Cs). The exact roles of PP2Cs in fruit development are still unclear. In this work, we verify that tomato SlPP2C5 works as a negative regulator in ABA signaling during fruit development. SlPP2C5 was inhibited by both monomeric and dimeric ABA receptors SlPYLs through ABA dose–dependent way, and it interacted physically with SlPYLs and SlSnRK2s. SlPP2C5 was highly expressed in fruits induced by exogenous ABA. Plants with overexpressed SlPP2C5 had lower sensitivity to ABA, which showed faster seed germination and primary root growth compared to Wild type (WT), while SlPP2C5-suppressed plants were more sensitive to ABA. SlPP2C5-over-expression (OE) delayed fruit ripening onset, while SlPP2C5-RNAi advanced fruit ripening. Alteration of SlPP2C5 expression impacts fruit quality parameters as well, including pericarp thickness, fruit shape index, seed number and weight and the soluble solid content. RNA-seq analysis revealed that there were significant expression differences of genes related to ethylene release and lycopene synthesis between WT and both SlPP2C5-OE and SlPP2C5-RNAi lines with an inversed variation. Taken together, our findings demonstrate that SlPP2C5 plays an important role in the regulation of fruit development, ripening and quality.
Funder
Natural Science Foundation of China
the Israel Science Foundation (ISF)–National NSFC Joint Scientific Research Program
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science,Physiology,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献