NARROW AND DWARF LEAF 1, the Ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in Oryza sativa L

Author:

Kusnandar Andree S1,Itoh Jun-Ichi2,Sato Yutaka3,Honda Eriko2,Hibara Ken-ichiro4,Kyozuka Junko1ORCID,Naramoto Satoshi5ORCID

Affiliation:

1. Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan

2. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan

3. Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan

4. Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484 Japan

5. Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810 Japan

Abstract

ABSTRACT The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3