Responses of the Plant Cell Wall to Sub-Zero Temperatures: A Brief Update

Author:

Takahashi Daisuke1ORCID,Willick Ian R234ORCID,Kasuga Jun5ORCID,Livingston III David P6

Affiliation:

1. Graduate School of Science and Engineering, Saitama University, Saitama, Japan

2. Department of Plant Biology, Michigan State University, East Lansing, MI, USA

3. Plant Resilience Institute, Michigan State University, East Lansing, MI, USA

4. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA

5. Research Center for Global Agro-Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan

6. USDA and Department of Crop Science, North Carolina State University, Raleigh, NC, USA

Abstract

Abstract Our general understanding of plant responses to sub-zero temperatures focuses on mechanisms that mitigate stress to the plasma membrane. The plant cell wall receives comparatively less attention, and questions surrounding its role in mitigating freezing injury remain unresolved. Despite recent molecular discoveries that provide insight into acclimation responses, the goal of reducing freezing injury in herbaceous and woody crops remains elusive. This is likely due to the complexity associated with adaptations to low temperatures. Understanding how leaf cell walls of herbaceous annuals promote tissue tolerance to ice does not necessarily lead to understanding how meristematic tissues are protected from freezing by tissue-level barriers formed by cell walls in overwintering tree buds. In this mini-review, we provide an overview of biological ice nucleation and explain how plants control the spatiotemporal location of ice formation. We discuss how sugars and pectin side chains alleviate adhesive injury that develops at sub-zero temperatures between the matrix polysaccharides and ice. The importance of site-specific cell-wall elasticity to promote tissue expansion for ice accommodation and control of porosity to impede ice growth and promote supercooling will be presented. How specific cold-induced proteins modify plant cell walls to mitigate freezing injury will also be discussed. The opinions presented in this report emphasize the importance of a plant’s developmental physiology when characterizing mechanisms of freezing survival.

Funder

The Great Lakes Bioenergy Research Center

The Japan Society for the Promotion of Science

Ichimura Foundation for New Technology

The Alexander-von-Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3