Tonoplast-Localized OsMOT1;2 Participates in Interorgan Molybdate Distribution in Rice

Author:

Ishikawa Satoru1ORCID,Hayashi Shimpei2,Tanikawa Hachidai1,Iino Manaka1,Abe Tadashi1,Kuramata Masato1,Feng Zhihang3,Fujiwara Toru3,Kamiya Takehiro3

Affiliation:

1. Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604 Japan

2. Institute of Agrobiological Sciences, NARO, Tsukuba, 305-8604 Japan

3. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan

Abstract

Abstract Molybdenum (Mo) is an essential element for plant growth and is utilized by several key enzymes in biological redox processes. Rice assimilates molybdate ions via OsMOT1;1, a transporter with a high affinity for molybdate. However, other systems involved in the molecular transport of molybdate in rice remain unclear. Here, we characterized OsMOT1;2, which shares amino acid sequence similarity with AtMOT1;2 and functions in vacuolar molybdate export. We isolated a rice mutant harboring a complete deletion of OsMOT1;2. This mutant exhibited a significantly lower grain Mo concentration than the wild type (WT), but its growth was not inhibited. The Mo concentration in grains was restored by the introduction of WT OsMOT1;2. The OsMOT1;2-GFP protein was localized to the vacuolar membrane when transiently expressed in rice protoplasts. At the reproductive growth stage of the WT plant, OsMOT1;2 was highly expressed in the 2nd and lower leaf blades and nodes. The deletion of OsMOT1;2 impaired interorgan Mo allocation in aerial parts: relative to the WT, the mutant exhibited decreased Mo levels in the 1st and 2nd leaf blades and grains but increased Mo levels in the 2nd and lower leaf sheaths, nodes and internodes. When the seedlings were exposed to a solution with a high KNO3 concentration in the absence of Mo, the mutant exhibited significantly lower nitrate reductase activity in the shoots than the WT. Our results suggest that OsMOT1;2 plays an essential role in interorgan Mo distribution and molybdoenzyme activity in rice.

Funder

Ministry of Agriculture, Forestry, and Fisheries of Japan

Genomics-based Technology for Agriculture Improvement

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3