Cell-to-Cell Connection in Plant Grafting—Molecular Insights into Symplasmic Reconstruction

Author:

Kurotani Ken-ichi1,Notaguchi Michitaka123ORCID

Affiliation:

1. Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

2. Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

3. Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

Abstract

ABSTRACT Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell–cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell–cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.

Funder

Project of the NARO Bio-oriented Technology Research Advancement Institution

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3