The Phosphate Starvation Response System: Its Role in the Regulation of Plant–Microbe Interactions

Author:

Isidra-Arellano Mariel C12,Delaux Pierre-Marc3,Valdés-López Oswaldo1

Affiliation:

1. Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090, México

2. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, México City, 04510, México

3. Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS Castanet Tolosan, France

Abstract

Abstract Phosphate (Pi) deficiency is a major factor limiting plant productivity worldwide. Land plants have evolved different strategies to cope with Pi deficiency. For instance, plants activate the so-called Pi starvation response (PSR) system, which is regulated by the transcription factor Phosphate Starvation Response1 (PHR1), to adjust plant growth and metabolic activity accordingly. Additionally, land plants can also establish mutualistic associations with soil microbes able to solubilize Pi from plant-inaccessible soil complexes and to transfer it to the host plant. A growing body of evidence indicates that PHR1 and the PSR system not only regulate the plant responses to Pi deficiency in an abiotic context, but they are also crucial for plants to properly interact with beneficial soil microbes able to provide them with soluble Pi. Recent evidence indicates that PHR1 and the PSR system contribute to shaping the plant-associated microbiota through the modulation of the plant immune system. The PSR and immune system outputs are tightly integrated by PHR1. Here, we review how plant host Pi status influences the establishment of the mutualistic association with soil microbes. We also highlight the role of PHR1 and the PSR system in shaping both the root microbiome and plant responses to Pi deficiency.

Funder

Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT-UNAM

Consejo Nacional de Ciencia y Tecnología (CONACyT

The Laboratoire de Recherche en Sciences Végétales

TULIP Laboratorire d’Excellence

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Reference71 articles.

1. Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus;Akamatsu;Plant J,2020

2. Plant microbiome engineering: expected benefits for improved crop growth and resilience;Arif;Trends Biotechnol,2020

3. Phosphorus mobilizing consortium Mammoth P ™ enhances plant growth;Baas;PeerJ,2016

4. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events;Balzergue;J. Exp. Bot,2011

5. PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants;Bari;Plant Physiol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3