High Ambient Temperatures Inhibit Ghd7-Mediated Flowering Repression in Rice

Author:

Nagalla Asanga Deshappriya1,Nishide Noriko1,Hibara Ken-ichiro1,Izawa Takeshi1ORCID

Affiliation:

1. Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan

Abstract

Abstract The anticipation of changing seasons is crucial for reproduction in plants. Despite the broad cultivation area, the effects of ambient temperature on photoperiodic flowering are largely unknown in rice. Here, we first examined flowering time under four distinct conditions: short-day or long-day and high or low temperature, using cultivars, nearly isogenic lines, and mutants in rice. We also examined gene expression patterns of key flowering-time genes using the same lines under various conditions including temporal dynamics after light pulses. In addition to delayed flowering because of low growth rates, we found that photoperiodic flowering is clearly enhanced by both Hd1 and Ghd7 genes under low-temperature conditions in rice. We also revealed that PhyB can control Ghd7 repressor activity as a temperature sensor to inhibit Ehd1, Hd3a and RFT1 at lower temperatures, likely through a post-transcriptional regulation, despite inductive photoperiod conditions. Furthermore, we found that rapid reduction of Ghd7 messenger RNA (mRNA) under high-temperature conditions can lead to mRNA increase in a rice florigen gene, RFT1. Thus, multiple temperature-sensing mechanisms can affect photoperiodic flowering in rice. The rising of ambient temperatures in early summer likely contributes to the inhibition of Ghd7 repressor activity, resulting in the appropriate floral induction of rice in temperate climates.

Funder

Japan Society for the Promotion of Science

Human Frontier Science Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3