The data quality problem (in the European Financial Data Space)

Author:

Borowicz M KonradORCID

Abstract

Abstract By creating the European Financial Data Space (EFDS), the European Commission aims to foster the development of data-driven innovation in the financial sector. Artificial intelligence (AI) is the most notable innovation that could benefit from enhanced access to data through the EFDS. However, the current policy framework establishing the EFDS suffers from a major limitation—it neglects the question of data quality or whether the data shared in the EFDS will be fit for the purpose of the development of AI applications. The AI Act and General Data Protection Regulation could play a role in fostering data quality in this area, but the two frameworks are also unlikely to do that to a satisfactory extent. To address the data quality problem, this article proposes policymakers should develop a framework for data quality that encompasses both a conceptual and an organizational dimension aimed at promoting the free flow of high-quality data in the EFDS.

Funder

Tilburg University’s Starter’s

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3