CAPLA: improved prediction of protein–ligand binding affinity by a deep learning approach based on a cross-attention mechanism

Author:

Jin Zhi1,Wu Tingfang123ORCID,Chen Taoning1,Pan Deng1,Wang Xuejiao1,Xie Jingxin1,Quan Lijun123ORCID,Lyu Qiang123

Affiliation:

1. School of Computer Science and Technology, Soochow University , Suzhou 215006, China

2. Province Key Lab for Information Processing Technologies, Soochow University , Suzhou 215006, China

3. Collaborative Innovation Center of Novel Software Technology and Industrialization , Nanjing 210000, China

Abstract

Abstract Motivation Accurate and rapid prediction of protein–ligand binding affinity is a great challenge currently encountered in drug discovery. Recent advances have manifested a promising alternative in applying deep learning-based computational approaches for accurately quantifying binding affinity. The structure complementarity between protein-binding pocket and ligand has a great effect on the binding strength between a protein and a ligand, but most of existing deep learning approaches usually extracted the features of pocket and ligand by these two detached modules. Results In this work, a new deep learning approach based on the cross-attention mechanism named CAPLA was developed for improved prediction of protein–ligand binding affinity by learning features from sequence-level information of both protein and ligand. Specifically, CAPLA employs the cross-attention mechanism to capture the mutual effect of protein-binding pocket and ligand. We evaluated the performance of our proposed CAPLA on comprehensive benchmarking experiments on binding affinity prediction, demonstrating the superior performance of CAPLA over state-of-the-art baseline approaches. Moreover, we provided the interpretability for CAPLA to uncover critical functional residues that contribute most to the binding affinity through the analysis of the attention scores generated by the cross-attention mechanism. Consequently, these results indicate that CAPLA is an effective approach for binding affinity prediction and may contribute to useful help for further consequent applications. Availability and implementation The source code of the method along with trained models is freely available at https://github.com/lennylv/CAPLA. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province Youth Fund

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3