Estimating the predictability of cancer evolution

Author:

Hosseini Sayed-Rzgar12,Diaz-Uriarte Ramon3,Markowetz Florian2,Beerenwinkel Niko14

Affiliation:

1. Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland

2. Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK

3. Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols (UAM-CSIC)”, Madrid, Spain

4. SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

Abstract

Abstract Motivation How predictable is the evolution of cancer? This fundamental question is of immense relevance for the diagnosis, prognosis and treatment of cancer. Evolutionary biologists have approached the question of predictability based on the underlying fitness landscape. However, empirical fitness landscapes of tumor cells are impossible to determine in vivo. Thus, in order to quantify the predictability of cancer evolution, alternative approaches are required that circumvent the need for fitness landscapes. Results We developed a computational method based on conjunctive Bayesian networks (CBNs) to quantify the predictability of cancer evolution directly from mutational data, without the need for measuring or estimating fitness. Using simulated data derived from >200 different fitness landscapes, we show that our CBN-based notion of evolutionary predictability strongly correlates with the classical notion of predictability based on fitness landscapes under the strong selection weak mutation assumption. The statistical framework enables robust and scalable quantification of evolutionary predictability. We applied our approach to driver mutation data from the TCGA and the MSK-IMPACT clinical cohorts to systematically compare the predictability of 15 different cancer types. We found that cancer evolution is remarkably predictable as only a small fraction of evolutionary trajectories are feasible during cancer progression. Availability and implementation https://github.com/cbg-ethz/predictability\_of\_cancer\_evolution Supplementary information Supplementary data are available at Bioinformatics online.

Funder

ERC Synergy

SystemsX.ch RTD

BBSRC

Cancer Research UK

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3