Interpreting protein abundance in Saccharomyces cerevisiae through relational learning

Author:

Brunnsåker Daniel1ORCID,Kronström Filip1ORCID,Tiukova Ievgeniia A23ORCID,King Ross D145ORCID

Affiliation:

1. Department of Computer Science and Engineering, Chalmers University of Technology , Gothenburg 412 96, Sweden

2. Department of Life Sciences, Chalmers University of Technology , Gothenburg 412 96, Sweden

3. Department of Industrial Biotechnology, KTH Royal Institute of Technology , Stockholm 106 91, Sweden

4. Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge CB3 0AS, United Kingdom

5. The Alan Turing Institute , London NW1 2DB, United Kingdom

Abstract

Abstract Motivation Proteomic profiles reflect the functional readout of the physiological state of an organism. An increased understanding of what controls and defines protein abundances is of high scientific interest. Saccharomyces cerevisiae is a well-studied model organism, and there is a large amount of structured knowledge on yeast systems biology in databases such as the Saccharomyces Genome Database, and highly curated genome-scale metabolic models like Yeast8. These datasets, the result of decades of experiments, are abundant in information, and adhere to semantically meaningful ontologies. Results By representing this knowledge in an expressive Datalog database we generated data descriptors using relational learning that, when combined with supervised machine learning, enables us to predict protein abundances in an explainable manner. We learnt predictive relationships between protein abundances, function and phenotype; such as α-amino acid accumulations and deviations in chronological lifespan. We further demonstrate the power of this methodology on the proteins His4 and Ilv2, connecting qualitative biological concepts to quantified abundances. Availability and implementation All data and processing scripts are available at the following Github repository: https://github.com/DanielBrunnsaker/ProtPredict.

Funder

Knut and Alice Wallenberg Foundation

Swedish Research Council Formas

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3