TVAR: assessing tissue-specific functional effects of non-coding variants with deep learning

Author:

Yang Hai12ORCID,Chen Rui23,Wang Quan23,Wei Qiang23,Ji Ying23ORCID,Zhong Xue34,Li Bingshan23ORCID

Affiliation:

1. Department of Computer Science and Engineering, East China University of Science and Technology , Shanghai 200237, China

2. Department of Molecular Physiology & Biophysics, Vanderbilt University , Nashville, TN 37232, USA

3. Vanderbilt Genetics Institute, Vanderbilt University , Nashville, TN 37232, USA

4. Department of Medicine, Vanderbilt University Medical Center , Nashville, TN 37232, USA

Abstract

Abstract Motivation Analysis of whole-genome sequencing (WGS) for genetics is still a challenge due to the lack of accurate functional annotation of non-coding variants, especially the rare ones. As eQTLs have been extensively implicated in the genetics of human diseases, we hypothesize that rare non-coding variants discovered in WGS play a regulatory role in predisposing disease risk. Results With thousands of tissue- and cell-type-specific epigenomic features, we propose TVAR. This multi-label learning-based deep neural network predicts the functionality of non-coding variants in the genome based on eQTLs across 49 human tissues in the GTEx project. TVAR learns the relationships between high-dimensional epigenomics and eQTLs across tissues, taking the correlation among tissues into account to understand shared and tissue-specific eQTL effects. As a result, TVAR outputs tissue-specific annotations, with an average AUROC of 0.77 across these tissues. We evaluate TVAR’s performance on four complex diseases (coronary artery disease, breast cancer, Type 2 diabetes and Schizophrenia), using TVAR’s tissue-specific annotations, and observe its superior performance in predicting functional variants for both common and rare variants, compared with five existing state-of-the-art tools. We further evaluate TVAR’s G-score, a scoring scheme across all tissues, on ClinVar, fine-mapped GWAS loci, Massive Parallel Reporter Assay (MPRA) validated variants and observe the consistently better performance of TVAR compared with other competing tools. Availability and implementation The TVAR source code and its scores on the ClinVar catalog, fine mapped GWAS Loci, high confidence eQTLs from GTEx dataset, and MPRA validated functional variants are available at https://github.com/haiyang1986/TVAR. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Vanderbilt University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3