Differential proteostatic regulation of insoluble and abundant proteins

Author:

Ramakrishnan Reshmi12,Houben Bert12,Rousseau Frederic12,Schymkowitz Joost12

Affiliation:

1. Switch Laboratory, Center for Brain and Disease Research, VIB

2. Department of Cellular and Molecular Medicine, KULeuven, Leuven Belgium

Abstract

Abstract Motivation Despite intense effort, it has been difficult to explain chaperone dependencies of proteins from sequence or structural properties. Results We constructed a database collecting all publicly available data of experimental chaperone interaction and dependency data for the Escherichia coli proteome, and enriched it with an extensive set of protein-specific as well as cell-context-dependent proteostatic parameters. Employing this new resource, we performed a comprehensive meta-analysis of the key determinants of chaperone interaction. Our study confirms that GroEL client proteins are biased toward insoluble proteins of low abundance, but for client proteins of the Trigger Factor/DnaK axis, we instead find that cellular parameters such as high protein abundance, translational efficiency and mRNA turnover are key determinants. We experimentally confirmed the finding that chaperone dependence is a function of translation rate and not protein-intrinsic parameters by tuning chaperone dependence of Green Fluorescent Protein (GFP) in E.coli by synonymous mutations only. The juxtaposition of both protein-intrinsic and cell-contextual chaperone triage mechanisms explains how the E.coli proteome achieves combining reliable production of abundant and conserved proteins, while also enabling the evolution of diverging metabolic functions. Availability and implementation The database will be made available via http://phdb.switchlab.org. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Research Council

European Union’s Horizon 2020 Framework Programme

Flanders Institute for Biotechnology

University of Leuven

Funds for Scientific Research Flanders

FWO

Flanders Agency for Innovation by Science and Technology

Federal Office for Scientific Affairs of Belgium

Erasmus Mundus fellowship

IWT

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3