Symbolic kinetic models in python (SKiMpy): intuitive modeling of large-scale biological kinetic models

Author:

Weilandt Daniel R1,Salvy Pierre1,Masid Maria1,Fengos Georgios1,Denhardt-Erikson Robin1,Hosseini Zhaleh1,Hatzimanikatis Vassily1ORCID

Affiliation:

1. Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland

Abstract

AbstractMotivationLarge-scale kinetic models are an invaluable tool to understand the dynamic and adaptive responses of biological systems. The development and application of these models have been limited by the availability of computational tools to build and analyze large-scale models efficiently. The toolbox presented here provides the means to implement, parameterize and analyze large-scale kinetic models intuitively and efficiently.ResultsWe present a Python package (SKiMpy) bridging this gap by implementing an efficient kinetic modeling toolbox for the semiautomatic generation and analysis of large-scale kinetic models for various biological domains such as signaling, gene expression and metabolism. Furthermore, we demonstrate how this toolbox is used to parameterize kinetic models around a steady-state reference efficiently. Finally, we show how SKiMpy can implement multispecies bioreactor simulations to assess biotechnological processes.Availability and implementationThe software is available as a Python 3 package on GitHub: https://github.com/EPFL-LCSB/SKiMpy, along with adequate documentation.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

European Union’s Horizon 2020 Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3