A framework for modeling epistatic interaction

Author:

Blumenthal David B1ORCID,Baumbach Jan1,Hoffmann Markus1ORCID,Kacprowski Tim1ORCID,List Markus1ORCID

Affiliation:

1. Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany

Abstract

Abstract Motivation Recently, various tools for detecting single nucleotide polymorphisms (SNPs) involved in epistasis have been developed. However, no studies evaluate the employed statistical epistasis models such as the χ2-test or quadratic regression independently of the tools that use them. Such an independent evaluation is crucial for developing improved epistasis detection tools, for it allows to decide if a tool’s performance should be attributed to the epistasis model or to the optimization strategy run on top of it. Results We present a protocol for evaluating epistasis models independently of the tools they are used in and generalize existing models designed for dichotomous phenotypes to the categorical and quantitative case. In addition, we propose a new model which scores candidate SNP sets by computing maximum likelihood distributions for the observed phenotypes in the cells of their penetrance tables. Extensive experiments show that the proposed maximum likelihood model outperforms three widely used epistasis models in most cases. The experiments also provide valuable insights into the properties of existing models, for instance, that quadratic regression perform particularly well on instances with quantitative phenotypes. Availability and implementation The evaluation protocol and all compared models are implemented in C++ and are supported under Linux and macOS. They are available at https://github.com/baumbachlab/genepiseeker/, along with test datasets and scripts to reproduce the experiments. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme

German Federal Ministry of Education and Research (BMBF) within the e:Med framework

German Science Foundation (DFG) via the Collaborative Research Center

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3