CnnPOGTP: a novel CNN-based predictor for identifying the optimal growth temperatures of prokaryotes using only genomic k-mers distribution

Author:

Wang Shaojing1ORCID,Li Guoqiang1,Liao Zitong1,Cao Yunke1,Yun Yuan1,Su Zhaoying1,Tian Xuefeng1,Gui Ziyu1,Ma Ting1

Affiliation:

1. Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education , Tianjin 300071, China

Abstract

Abstract Summary Temperature is very important for the growth of microorganisms. Appropriate temperature conditions can improve the possibility for isolation of currently uncultured microorganisms. The development of metagenomic binning technology had dramatically increased the availability of genomic information of prokaryotes, providing convenience to infer the optimal growth temperature (OGT). Here, we proposed CnnPOGTP, a predictor for OGTs of prokaryotes based on deep learning method using only k-mers distribution derived from genomic sequence. This method was annotation free, and the predicted OGT could be obtained by simply providing the genome sequence to the CnnPOGTP website. Availability and implementation http://www.orgene.net/CnnPOGTP. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key Research and Development Plan

NSFC Project

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference15 articles.

1. iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters;Amin;Bioinformatics,2020

2. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria;Antoniou;Water Res,1990

3. Challenges of unculturable bacteria: environmental perspectives;Bodor;Rev. Environ. Sci. Biotechnol,2020

4. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes;Galtier;J. Mol. Evol,1997

5. Temperature-gradient incubation isolates multiple competitive species from a single environmental sample;Houghton;Access Microbiol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3