Context awareness and embedding for biomedical event extraction

Author:

Yan ShankaiORCID,Wong Ka-ChunORCID

Abstract

Abstract Motivation Biomedical event extraction is fundamental for information extraction in molecular biology and biomedical research. The detected events form the central basis for comprehensive biomedical knowledge fusion, facilitating the digestion of massive information influx from the literature. Limited by the event context, the existing event detection models are mostly applicable for a single task. A general and scalable computational model is desiderated for biomedical knowledge management. Results We consider and propose a bottom-up detection framework to identify the events from recognized arguments. To capture the relations between the arguments, we trained a bidirectional long short-term memory network to model their context embedding. Leveraging the compositional attributes, we further derived the candidate samples for training event classifiers. We built our models on the datasets from BioNLP Shared Task for evaluations. Our method achieved the average F-scores of 0.81 and 0.92 on BioNLPST-BGI and BioNLPST-BB datasets, respectively. Comparing with seven state-of-the-art methods, our method nearly doubled the existing F-score performance (0.92 versus 0.56) on the BioNLPST-BB dataset. Case studies were conducted to reveal the underlying reasons. Availability and implementation https://github.com/cskyan/evntextrc. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Research Grants Council of the Hong Kong Special Administrative Region

NVIDIA

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference34 articles.

1. Event extraction for systems biology by text mining the literature;Ananiadou;Trends Biotechnol,2010

2. A neural probabilistic language model;Bengio;J. Mach. Learn. Res,2003

3. TEES 2.2: biomedical event extraction for diverse corpora;Björne;BMC Bioinformatics,2015

4. Complex event extraction at PubMed scale;Bjorne;Bioinformatics,2010

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3