T-S2Inet: Transformer-based sequence-to-image network for accurate nanopore sequence recognition

Author:

Guan Xiaoyu12ORCID,Shao Wei12,Zhang Daoqiang12

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence , Nanjing 211106, China

2. Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China

Abstract

Abstract Motivation Nanopore sequencing is a new macromolecular recognition and perception technology that enables high-throughput sequencing of DNA, RNA, even protein molecules. The sequences generated by nanopore sequencing span a large time frame, and the labor and time costs incurred by traditional analysis methods are substantial. Recently, research on nanopore data analysis using machine learning algorithms has gained unceasing momentum, but there is often a significant gap between traditional and deep learning methods in terms of classification results. To analyze nanopore data using deep learning technologies, measures such as sequence completion and sequence transformation can be employed. However, these technologies do not preserve the local features of the sequences. To address this issue, we propose a sequence-to-image (S2I) module that transforms sequences of unequal length into images. Additionally, we propose the Transformer-based T-S2Inet model to capture the important information and improve the classification accuracy. Results Quantitative and qualitative analysis shows that the experimental results have an improvement of around 2% in accuracy compared to previous methods. The proposed method is adaptable to other nanopore platforms, such as the Oxford nanopore. It is worth noting that the proposed method not only aims to achieve the most advanced performance, but also provides a general idea for the analysis of nanopore sequences of unequal length. Availability and implementation The main program is available at https://github.com/guanxiaoyu11/S2Inet.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Jiangsu Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3