Active learning for efficient analysis of high-throughput nanopore data

Author:

Guan Xiaoyu1ORCID,Li Zhongnian12,Zhou Yueying1,Shao Wei1,Zhang Daoqiang1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence , Nanjing 211106, China

2. School of Computer Science, China University of Mining Technology , Xuzhou 221116, China

Abstract

Abstract Motivation As the third-generation sequencing technology, nanopore sequencing has been used for high-throughput sequencing of DNA, RNA, and even proteins. Recently, many studies have begun to use machine learning technology to analyze the enormous data generated by nanopores. Unfortunately, the success of this technology is due to the extensive labeled data, which often suffer from enormous labor costs. Therefore, there is an urgent need for a novel technology that can not only rapidly analyze nanopore data with high-throughput, but also significantly reduce the cost of labeling. To achieve the above goals, we introduce active learning to alleviate the enormous labor costs by selecting the samples that need to be labeled. This work applies several advanced active learning technologies to the nanopore data, including the RNA classification dataset (RNA-CD) and the Oxford Nanopore Technologies barcode dataset (ONT-BD). Due to the complexity of the nanopore data (with noise sequence), the bias constraint is introduced to improve the sample selection strategy in active learning. Results: The experimental results show that for the same performance metric, 50% labeling amount can achieve the best baseline performance for ONT-BD, while only 15% labeling amount can achieve the best baseline performance for RNA-CD. Crucially, the experiments show that active learning technology can assist experts in labeling samples, and significantly reduce the labeling cost. Active learning can greatly reduce the dilemma of difficult labeling of high-capacity nanopore data. We hope active learning can be applied to other problems in nanopore sequence analysis. Availability and implementation The main program is available at https://github.com/guanxiaoyu11/AL-for-nanopore. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3