NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification

Author:

Stolfi Paola1,Mastropietro Andrea2ORCID,Pasculli Giuseppe2,Tieri Paolo1ORCID,Vergni Davide1

Affiliation:

1. Institute for Applied Computing (IAC) ‘Mauro Picone’, National Research Council of Italy (CNR) , Rome 00185, Italy

2. Department of Computer, Control and Management Engineering (DIAG) ‘Antonio Ruberti’, Sapienza University of Rome, Rome 00185, Italy

Abstract

AbstractMotivationGene–disease associations are fundamental for understanding disease etiology and developing effective interventions and treatments. Identifying genes not yet associated with a disease due to a lack of studies is a challenging task in which prioritization based on prior knowledge is an important element. The computational search for new candidate disease genes may be eased by positive-unlabeled learning, the machine learning (ML) setting in which only a subset of instances are labeled as positive while the rest of the dataset is unlabeled. In this work, we propose a set of effective network-based features to be used in a novel Markov diffusion-based multi-class labeling strategy for putative disease gene discovery.ResultsThe performances of the new labeling algorithm and the effectiveness of the proposed features have been tested on 10 different disease datasets using three ML algorithms. The new features have been compared against classical topological and functional/ontological features and a set of network- and biological-derived features already used in gene discovery tasks. The predictive power of the integrated methodology in searching for new disease genes has been found to be competitive against state-of-the-art algorithms.Availability and implementationThe source code of NIAPU can be accessed at https://github.com/AndMastro/NIAPU. The source data used in this study are available online on the respective websites.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

AMDROMA ‘Algorithmic and Mechanism Design Research in Online Markets’

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3