ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data

Author:

Labory Justine12,Le Bideau Gwendal2,Pratella David1,Yao Jean-Elisée1,Ait-El-Mkadem Saadi Samira2,Bannwarth Sylvie2,El-Hami Loubna12,Paquis-Fluckinger Véronique2,Bottini Silvia1ORCID

Affiliation:

1. Université Côte d’Azur, Center of Modeling, Simulation and Interactions , Nice 06000, France

2. Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre Hospitalier Universitaire (CHU) de Nice , Nice 06200, France

Abstract

Abstract Motivation Current advances in omics technologies are paving the diagnosis of rare diseases proposing a complementary assay to identify the responsible gene. The use of transcriptomic data to identify aberrant gene expression (AGE) has demonstrated to yield potential pathogenic events. However, popular approaches for AGE identification are limited by the use of statistical tests that imply the choice of arbitrary cut-off for significance assessment and the availability of several replicates not always possible in clinical contexts. Results Hence, we developed ABerrant Expression Identification empLoying machine LEarning from sequencing data (ABEILLE) a variational autoencoder (VAE)-based method for the identification of AGEs from the analysis of RNA-seq data without the need for replicates or a control group. ABEILLE combines the use of a VAE, able to model any data without specific assumptions on their distribution, and a decision tree to classify genes as AGE or non-AGE. An anomaly score is associated with each gene in order to stratify AGE by the severity of aberration. We tested ABEILLE on a semi-synthetic and an experimental dataset demonstrating the importance of the flexibility of the VAE configuration to identify potential pathogenic candidates. Availability and implementation ABEILLE source code is freely available at: https://github.com/UCA-MSI/ABEILLE. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

UCA JEDI Investments in the Future project managed by the National Research Agency

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3