NoVaTeST: identifying genes with location-dependent noise variance in spatial transcriptomics data

Author:

Abrar Mohammed Abid1ORCID,Kaykobad M1ORCID,Rahman M Saifur2ORCID,Samee Md Abul Hassan3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Brac University , Dhaka 1212, Bangladesh

2. Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology , ECE Building, Palashi , Dhaka 1205, Bangladesh

3. Department of Integrative Physiology, Baylor College of Medicine , Houston, TX 77030, United States

Abstract

Abstract Motivation Spatial transcriptomics (ST) can reveal the existence and extent of spatial variation of gene expression in complex tissues. Such analyses could help identify spatially localized processes underlying a tissue’s function. Existing tools to detect spatially variable genes assume a constant noise variance across spatial locations. This assumption might miss important biological signals when the variance can change across locations. Results In this article, we propose NoVaTeST, a framework to identify genes with location-dependent noise variance in ST data. NoVaTeST models gene expression as a function of spatial location and allows the noise to vary spatially. NoVaTeST then statistically compares this model to one with constant noise and detects genes showing significant spatial noise variation. We refer to these genes as “noisy genes.” In tumor samples, the noisy genes detected by NoVaTeST are largely independent of the spatially variable genes detected by existing tools that assume constant noise, and provide important biological insights into tumor microenvironments. Availability and implementation An implementation of the NoVaTeST framework in Python along with instructions for running the pipeline is available at https://github.com/abidabrar-bracu/NoVaTeST.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Redefining Mucosal Inflammation with Spatial Genomics;Journal of Dental Research;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3