Affiliation:
1. Key Lab of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
Abstract
Motivation
The classification of high-throughput protein data based on mass spectrometry (MS) is of great practical significance in medical diagnosis. Generally, MS data are characterized by high dimension, which inevitably leads to prohibitive cost of computation. To solve this problem, one-bit compressed sensing (CS), which is an extreme case of quantized CS, has been employed on MS data to select important features with low dimension. Though enjoying remarkably reduction of computation complexity, the current one-bit CS method does not consider the unavoidable noise contained in MS dataset, and does not exploit the inherent structure of the underlying MS data.
Results
We propose two feature selection (FS) methods based on one-bit CS to deal with the noise and the underlying block-sparsity features, respectively. In the first method, the FS problem is modeled as a perturbed one-bit CS problem, where the perturbation represents the noise in MS data. By iterating between perturbation refinement and FS, this method selects the significant features from noisy data. The second method formulates the problem as a perturbed one-bit block CS problem and selects the features block by block. Such block extraction is due to the fact that the significant features in the first method usually cluster in groups. Experiments show that, the two proposed methods have better classification performance for real MS data when compared with the existing method, and the second one outperforms the first one.
Availability and implementation
The source code of our methods is available at: https://github.com/tianyan8023/OBCS.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献