Distance indexing and seed clustering in sequence graphs

Author:

Chang Xian1,Eizenga Jordan1,Novak Adam M1,Sirén Jouni1,Paten Benedict1

Affiliation:

1. Department of Biomolecular Engineering, University of California Santa Cruz Genomics Institute, Santa Cruz, CA 95060, USA

Abstract

Abstract Motivation Graph representations of genomes are capable of expressing more genetic variation and can therefore better represent a population than standard linear genomes. However, due to the greater complexity of genome graphs relative to linear genomes, some functions that are trivial on linear genomes become much more difficult in genome graphs. Calculating distance is one such function that is simple in a linear genome but complicated in a graph context. In read mapping algorithms such distance calculations are fundamental to determining if seed alignments could belong to the same mapping. Results We have developed an algorithm for quickly calculating the minimum distance between positions on a sequence graph using a minimum distance index. We have also developed an algorithm that uses the distance index to cluster seeds on a graph. We demonstrate that our implementations of these algorithms are efficient and practical to use for a new generation of mapping algorithms based upon genome graphs. Availability and implementation Our algorithms have been implemented as part of the vg toolkit and are available at https://github.com/vgteam/vg.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized pangenome references;Nature Methods;2024-09-11

2. DNA sequences alignment method using sparse index on pan-genome graph;Journal of Bioinformatics and Computational Biology;2024-08-31

3. Maximum-scoring path sets on pangenome graphs of constant treewidth;Frontiers in Bioinformatics;2024-07-01

4. Label-guided seed-chain-extend alignment on annotated De Bruijn graphs;Bioinformatics;2024-06-28

5. Harp: Leveraging Quasi-Sequential Characteristics to Accelerate Sequence-to-Graph Mapping of Long Reads;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3