Affiliation:
1. Institute for Mathematical Modeling of Biological Systems, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
Abstract
Abstract
Motivation
Nucleic acids and proteins often have localized sequence motifs that enable highly specific interactions. Due to the biological relevance of sequence motifs, numerous inference methods have been developed. Recently, convolutional neural networks (CNNs) have achieved state of the art performance. These methods were able to learn transcription factor binding sites from ChIP-seq data, resulting in accurate predictions on test data. However, CNNs typically distribute learned motifs across multiple filters, making them difficult to interpret. Furthermore, networks trained on small datasets often do not generalize well to new sequences.
Results
Here we present circular filters, a novel convolutional architecture, that convolves sequences with circularly permutated variants of the same filter. We motivate circular filters by the observation that CNNs frequently learn filters that correspond to shifted and truncated variants of the true motif. Circular filters enable learning of full-length motifs and allow easy interpretation of the learned filters. We show that circular filters improve motif inference performance over a wide range of hyperparameters as well as sequence length. Furthermore, we show that CNNs with circular filters in most cases outperform conventional CNNs at inferring DNA binding sites from ChIP-seq data.
Availability and implementation
Code is available at https://github.com/christopherblum.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
Deutsche Forschungsgemeinschaft
German Research Foundation
International Max Planck Research School
Max Planck Institute for Plant Breeding Research
Universities of Düsseldorf and Cologne
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献