Generation of a high confidence set of domain–domain interface types to guide protein complex structure predictions by AlphaFold

Author:

Geist Johanna Lena1,Lee Chop Yan1,Strom Joelle Morgan1,de Jesús Naveja José123ORCID,Luck Katja1ORCID

Affiliation:

1. Institute of Molecular Biology (IMB) gGmbH , Mainz 55128, Germany

2. 3rd Medical Department, University Medical Center, Johannes Gutenberg University Mainz , Mainz 55131, Germany

3. University Cancer Center, University Medical Center, Johannes Gutenberg University Mainz , Mainz 55131, Germany

Abstract

Abstract Motivation While the release of AlphaFold (AF) represented a breakthrough for the prediction of protein complex structures, its sensitivity, especially when using full length protein sequences, still remains limited. Modeling success rates might increase if AF predictions were guided by likely interacting protein fragments. This approach requires available sets of highly confident protein–protein interface types. Computational resources, such as 3did, infer interacting globular domain types from observed contacts in protein structures. Assessing the accuracy of these predicted interface types is difficult because we lack hand-curated reference sets of verified domain–domain interface (DDI) types. Results To improve protein complex modeling of DDIs by AF, we manually inspected 80 randomly selected DDI types from the 3did resource to generate a first reference set of DDI types. Identified cases of DDI type nonapproval (40%) primarily resulted from inaccurate Pfam domain matches, crystal contacts, and synthetic protein constructs. Using logistic regression, we predicted a subset of 2411 out of 5724 considered DDI types in 3did to be of high confidence, which we subsequently applied to 53 000 human–protein interactions to predict DDIs followed by AF modeling. We obtained highly confident AF models for 604 out of 1129 predicted DDIs. Of note, for 47% of them no confident AF structural model could be obtained using full length protein sequences. Availability and implementation Code is available at https://github.com/KatjaLuckLab/DDI_manuscript.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3