ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries

Author:

Swanson Kyle12ORCID,Walther Parker3,Leitz Jeremy2,Mukherjee Souhrid2,Wu Joseph C4,Shivnaraine Rabindra V2,Zou James15ORCID

Affiliation:

1. Department of Computer Science, Stanford University , 353 Jane Stanford Way , Stanford, CA 94305, USA

2. Greenstone Biosciences , 3160 Porter Drive, Suite 140 , Palo Alto, CA 94304, USA

3. Carleton College , One North College Street , Northfield, MN 55057, USA

4. Stanford Cardiovascular Institute, Stanford University , 265 Campus Drive , Stanford, CA 94305, USA

5. Department of Biomedical Data Science, Stanford University , 1265 Welch Road , Stanford, CA 94305, USA

Abstract

Abstract Motivation The emergence of large chemical repositories and combinatorial chemical spaces, coupled with high-throughput docking and generative AI, have greatly expanded the chemical diversity of small molecules for drug discovery. Selecting compounds for experimental validation requires filtering these molecules based on favourable druglike properties, such as Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET). Results We developed ADMET-AI, a machine learning platform that provides fast and accurate ADMET predictions both as a website and as a Python package. ADMET-AI has the highest average rank on the TDC ADMET Leaderboard, and it is currently the fastest web-based ADMET predictor, with a 45% reduction in time compared to the next fastest public ADMET web server. ADMET-AI can also be run locally with predictions for one million molecules taking just 3.1 h. Availability and implementation The ADMET-AI platform is freely available both as a web server at admet.ai.greenstonebio.com and as an open-source Python package for local batch prediction at github.com/swansonk14/admet_ai (also archived on Zenodo at doi.org/10.5281/zenodo.10372930). All data and models are archived on Zenodo at doi.org/10.5281/zenodo.10372418.

Funder

Knight-Hennessy Scholarship

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3