Integrative survival analysis of breast cancer with gene expression and DNA methylation data

Author:

Bichindaritz Isabelle1,Liu Guanghui1ORCID,Bartlett Christopher1

Affiliation:

1. Intelligent Bio Systems Laboratory, Biomedical and Health Informatics, Department of Computer Science, State University of New York at Oswego, Syracuse, NY 13202, USA

Abstract

Abstract Motivation Integrative multi-feature fusion analysis on biomedical data has gained much attention recently. In breast cancer, existing studies have demonstrated that combining genomic mRNA data and DNA methylation data can better stratify cancer patients with distinct prognosis than using single signature. However, those existing methods are simply combining these gene features in series and have ignored the correlations between separate omics dimensions over time. Results In the present study, we propose an adaptive multi-task learning method, which combines the Cox loss task with the ordinal loss task, for survival prediction of breast cancer patients using multi-modal learning instead of performing survival analysis on each feature dataset. First, we use local maximum quasi-clique merging (lmQCM) algorithm to reduce the mRNA and methylation feature dimensions and extract cluster eigengenes respectively. Then, we add an auxiliary ordinal loss to the original Cox model to improve the ability to optimize the learning process in training and regularization. The auxiliary loss helps to reduce the vanishing gradient problem for earlier layers and helps to decrease the loss of the primary task. Meanwhile, we use an adaptive weights approach to multi-task learning which weighs multiple loss functions by considering the homoscedastic uncertainty of each task. Finally, we build an ordinal cox hazards model for survival analysis and use long short-term memory (LSTM) method to predict patients’ survival risk. We use the cross-validation method and the concordance index (C-index) for assessing the prediction effect. Stringent cross-verification testing processes for the benchmark dataset and two additional datasets demonstrate that the developed approach is effective, achieving very competitive performance with existing approaches. Availability and implementation https://github.com/bhioswego/ML_ordCOX.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3